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Autophagic flux is an important process during autophagy maturation in coronary arterial myocytes (CAMs).
Here, we defined the role andmolecular mechanism of the motor protein dynein in the regulation of autophagic
flux in CAMs. In mouse CAMs, dynein protein is abundantly expressed. Pharmacological or genetic inhibition of
dynein activity dramatically enhanced 7-ketocholesterol (7-Ket)-induced expression of the autophagic marker
LC3B and increased the cellular levels of p62, a selective substrate for autophagy. Inhibition of dynein activity
increased 7-Ket-induced formation of autophagosomes (APs), but reduced the number of autophagolysosomes
(APLs) in CAMs. Furthermore, 7-Ket increased the fusion of APs with lysosomes and the velocity of APs
movement in mouse CAMs, which was abolished when the dynein activity in these cells was inhibited.
Interestingly, 7-Ket increased lysosomal Ca2+ release and stimulated dynein ATPase activity, both of which
were abolished by NAADP antagonists, NED-19 and PPADS. Taken together, our data suggest that NAADP-
mediated Ca2+ release plays a crucial role in regulating dynein activity, which mediates APs trafficking and
fusion with lysosomes to form APLs thus regulating autophagic flux in CAMs under atherogenic stimulation.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Autophagy (also known as macroautophagy) is a cellular catabolic
pathway leading to lysosomal degradation and recycling of proteins
and organelles in eukaryotes [1]. A growing body of evidence suggests
that autophagy is stimulated in advanced atherosclerotic plaques by
oxidized lipids, inflammation, and metabolic stress [2]. It is suggested
that autophagy may have both protective and detrimental roles during
atherosclerosis, depending upon the status of autophagy or stages of
atherosclerosis [2–4]. Although themolecularmechanisms for autophagy
have been extensively studied since the discovery of mammalian
autophagy genes (Atg genes), it remains largely unknown how autoph-
agy is regulated in smooth muscle cells (SMCs) in the pathogenesis of
coronary atherosclerosis. 7-Ketocholesterol (7-Ket) is amajor oxidation
product of cholesterol found at high levels in atherosclerotic plaques
and is even more atherogenic than cholesterol in some animal studies
[5,6]. 7-Ket regulates the expression of autophagic genes [7]. Therefore,
7-Ket was chosen as atherogenic stimulus in the present study to detect
the regulatory mechanisms of autophagy in mouse coronary arterial
myocytes (CAMs).
logy and Toxicology, Medical
220 East Broad Street, P.O. Box
3; fax: +1 804 828 2117.

ights reserved.
Upon induction of autophagy, nascent double-membraned autoph-
agic vacuoles (autophagosomes, APs) are formed to sequester a cargo,
such as protein aggregates, damaged organelles, or pathogens [8]. Late
stage APs fuse with lysosomes to form autophagolysosomes (APLs),
where the cargo is degraded by lysosomal hydrolases [9]. This APL
formation together with the lysosomal degradation process is also
known as autophagic flux. In mammalian cells, there are multiple
sites of autophagosomes (APs) formation, thus the APs need to be
trafficked and transported to the lysosomes implicating that a specific
transport system may be present. The molecular details of this
transport process are unknown. Here we investigated a potential role
of dynein ATPase in this process. Dynein ATPase is a multi-subunit
cytoplasmic motor protein, which is responsible for nearly all
minus-end microtubule-based transport of vesicles within mammalian
cells [10]. Dynein regulates a variety of intracellular motile processes
including mitosis, maintenance of the Golgi apparatus and trafficking
of membranous vesicles and other intracellular particles [11]. Recent
studies have demonstrated that dynein is involved in AP trafficking
to meet with lysosomes to form APLs [12–16]. Inhibition or loss of
dynein function has been demonstrated to cause impaired AP fusion
with lysosomes or increased number of APs in glioma or neuronal
cells [17]. Based on these observations, we hypothesized that
dynein contributes to the fusion of APs with lysosome to form APLs
and consequent autophagy flux in CAMs under proatherogenic
stimulation.

Here, we demonstrate that the atherogenic stimulus 7-Ket enhances
autophagy in CAMs and triggers a dynein-mediated APs trafficking and
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fusion with lysosomes. Lysosome-dependent NAADP-sensitive Ca2+

release participates in the regulation of dynein ATPase activity.
2. Materials and methods

2.1. Mice

Mice were purchased from the Jackson Laboratory. Eight-week old
male and female mice were used in all experiments. All experimental
protocols were reviewed and approved by the Institutional Animal
Care and Use Committee of Virginia Commonwealth University.
2.2. Isolation and culture of mouse CAMs

CAMs were isolated frommice as previously described [18]. In brief,
mice were deeply anesthetized with an intraperitoneal injection of
pentobarbital sodium (25 mg/kg). The heart was excised with an intact
aortic arch and immersed in a petri dish filled with ice-cold Krebs–
Henseleit (KH) solution (in mM: 20 HEPES, 128 NaCl, 2.5 KCl, 2.7
CaCl2, 1MgCl2, 16 glucose, pH 7.4). A 25-gaugeneedlefilledwithHank's
buffered saline solution (HBSS) (in mM: 5.0 KCl, 0.3 KH2PO4, 138 NaCl,
4.0 NaHCO3, 0.3 Na2HPO4·7H2O, 5.6 D-glucose, and 10.0 HEPES, with 2%
antibiotics) was inserted into the aortic lumen while the whole heart
remained in the ice-cold buffer solution. The tip of the needle was
inserted deep into the heart close to the aortic valve. The needle was
tied in place with the needle tip as close to the base of the heart as possi-
ble. The infusionpumpwas startedwith a 20-ml syringe containingwarm
HBSS through an intravenous extension set at a rate of 0.1 ml/min for
15 min. HBSS was replaced with a warm enzyme solution (1 mg/ml
collagenase type I, 0.5 mg/ml soybean trypsin inhibitor, 3% BSA, and 2%
antibiotic-antimycotic), which was flushed through the heart at a rate
of 0.1 ml/min. Perfusion fluidwas collected at 30-, 60-, and 90-min inter-
vals. At 90 min, the heart was cut with scissors and the apex was opened
to flush out the cells that collected inside the ventricle. The fluidwas cen-
trifuged at 1000 rpm for 10 min, the cell-rich pelletsweremixedwith the
oneof themedia describedbelow, and the cellswereplatedon2%gelatin-
coated six-well plates and incubated in 5% CO2–95% O2 at 37 °C. DMEM
supplemented with 10% FBS, 10% mouse serum, and 2% antibiotics was
used to culture isolated smooth muscle cells. The medium was replaced
three days after cell isolation and then once or twice each week until
the cells grew to confluence. As previously described [19], mouse CAMs
were identified according to theirmorphology, immunohistological stain-
ing, Western blot analysis of marker proteins, and flow cytometric
characteristics.
2.3. Demonstration of dynein expression in coronary arterial myocytes

For reverse transcriptase PCR (RT-PCR) analysis, total RNA was
isolated from primary cultured CAMs by Trizole (Invitrogen, CA, USA),
and 50, 100 and 200 ng of different amount of total RNA was tran-
scribed to cDNA according to the instructions of the first strand cDNA
synthesis kit manufacturer (Bio-Rad, Hercules, CA, USA). These synthe-
sized cDNAs were used for dynein PCR reaction by PCR Supermix
(Invitrogen) with primers of 5′-GCCAGTTACAGGAACCTCACG-3′ and
5′-CCAGAAGGATGTACCAGCCATT-3′ at a final concentration of 200 nM.
β-Actin was used as control with primers of 5′-TCGCTGCGCTGGTCGTC-
3′ and 5′-GGCCTCGTCACCCACATAGGA-3′. A negative control was
performed to verify the PCR condition, which contained all the compo-
nents of the PCR except the template DNA. The PCR products were
separated by 1.2% agarose gel for confirmation of product size.

Cell homogenates of 10, 20, and 40 μg from primary cultures of
CAMs were used for Western blot analysis as described previously
[20]. An anti-dynein antibody from Santa Cruz (SC-80295, 1:200) was
used to probe dynein protein and β-actin was used as loading control.
2.4. Transfection of dynamitin cDNA

Transfection of dynamitin cDNA (MC200162, OriGene Technologies)
was performed using the TransFectin Lipid Reagent (Bio-Rad, CA, USA)
according to themanufacturer's instructions, aswe described previously
[20]. The efficiency of dynamitin cDNA transfection was assessed by
Western blot analyses. Dynamitin antibody was purchased from Santa
Cruz Biotechnology (SC-135135; 1:200).

2.5. Flow cytometric detection of APs and APLs

The Cyto-ID Autophagy Detection Kit (Enzo Life Sciences, Cat. No.
ENZ-51031-K200) was used to detect APs. Briefly, CAMs (1 × 105/ml)
were collected and centrifuged (400 ×g, 5 min) at the end of the treat-
ment. Then, CAMswere incubatedwith 0.5 ml of freshly diluted Cyto-ID
Green Detection Reagent (1:4000) for 30 min at 37 °C in the dark.
Without washing, stained CAMs were run in the green (FL1) channel
with a Guava Easycyte Mini Flow Cytometry System (Guava Technolo-
gies, Hayward, CA) and analyzed with Guava acquisition and analysis
software (Guava Technologies). The enhancement of Cyto-ID Green
dye signal indicates an increase in APs.

In addition, acridine orange (Sigma) was used to detect APLs. CAMs
(1 × 106/ml) were stained with acridine orange (1:5000) for 17 min.
Afterwashes, CAMswere harvested in phenol red-free growthmedium.
Green (510–530 nm) and red (N650 nm) fluorescence emission from
104 cells illuminatedwith blue (488 nm) excitation lightwasmeasured
with Flow Cytometry System and analyzed with Guava acquisition and
analysis software. The ratio of mean red/green fluorescence intensity
from live cells gated by FSC/SSC was calculated to indicate the change
of intracellular APLs.

2.6. Confocal microscopic analysis of co-localization of lysosomes with APs
in CAMs

BacMam (baculovirus-based expression in mammalian cells)
expression system was utilized to deliver and express LC3B-GFP and
Lamp1-RFP genes in CAMs.Modified insect virus (baculovirus) express-
ing a fusion construct of LC3B-GFP (P36235, Invitrogen) or Lamp1-RFP
(C10597, Invitrogen) was packaged as BacMam virus particles. CAMs
(4 × 104/ml) cultured in 35 mm dish were incubated with 12 μl
mixture of BacMam virus particles containing LC3B-GFP or Lamp1-RFP
gene at 37 °C for 24 h. Then, the cells were replaced with freshmedium
and ready for treatment. Thefluorescent images for APs (LC3B-GFP) and
lysosomes (Lamp1-RFP) in CAMs were recorded at an excitation/
emission (nm) of 485/520 and 555/584. Then the colocalizations were
visualized with confocal microscopy. The colocalization coefficiency of
LC3B-GFP and Lysosomes-RFP was analyzed with Image-Pro Plus 6.0
software as we previously described [21].

2.7. Dynamic analysis of AP movement in CAMs

CAMs (2 × 104/ml) cultured in 35 mm dish were incubated with
12 μl BacMam GFP-LC3B virus particles at 37 °C for 16 h to express
the LC3B-GFP gene. The confocal fluorescent microscopic recording
was conducted with an Olympus Fluoview System. The fluorescent
images for APs (LC3B-GFP) of the CAMs were continuously recorded
at an excitation/emission (nm) of 485/520 by using XYT recording
mode with a speed of 1 frame/10 s for 10 min. Vesicle tracking was
performed inMAGEJ using the LSM reader andManual tracking plugins
according to the published protocol [12]. Ten vesicles with GFP-LC3B
were chosen at random for each cell. These vesicles were then tracked
manually for as long as they were visible, while the program calculated
velocities for each frame. All the results were further calculated and
analyzed in Excel. The number of cells with different velocity of APs
was calculated.
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2.8. Fluorescent microscopic measurement of [Ca2+]i in CAMs

A fluorescence image analysis systemwas used to determine [Ca2+]i
in CAMs with fura-2 acetoxymethyl ester (fura-2) as an indicator as
previously described [19,22], having been loaded with 10 μM fura-2 at
room temperature for 30 min, the cells were washed three times with
Ca2+-free Hank's buffer. The ratio of fura-2 emissions, when excited at
thewavelengths of 340 and 380 nm,was recordedwith a digital camera
(Nikon Diaphoto TMD Inverted Microscope). Metafluor imaging and
analysis software were used to acquire, digitize, and store the images
for off-line processing and statistical analysis (Universal Imaging). The
fluorescence ratio of excitation at 340 nm to that at 380 nm (F340/
F380) was determined after background subtraction, and [Ca2+]i was
calculated by using the following equation: [Ca2+]i = Kdβ[(R −
Rmin) / (Rmax − R)], where Kd for the fura-2-Ca2+ complex is 224 nM;
R is the fluorescence ratio (F340/F380); Rmax and Rmin are the maximal
and minimal fluorescence ratios measured by addition of 10 μM of
Ca2+ ionophore ionomycin to Ca2+-replete solution (2.5 mM CaCl2)
and Ca2+-free solution (5 mMEGTA), respectively; and β is the fluores-
cence ratio at 380-nm excitation determined at Rmin and Rmax, respec-
tively. Lysosomal Ca2+ release was monitored indirectly by treating
Fura-2-loaded CAMs with Glycyl-L-phenylalanine 2-naphthylamide
(GPN, 200 μM), a tripeptide causingosmotic lysis of cathepsin C-positive
lysosomes.

2.9. Fluorescent confocalmicroscopicmeasurement of lysosome Ca2+ release

To detect lysosome Ca2+ release, sub-confluent CAMs in 35-mm
cell culture dishes were incubated with dextran-conjugated tetra-
methylrhodamine (Rho; 1 mg/ml; Molecular Probes) for 4 h in DMEM
medium containing 10% FBS at 37 °C, 5% CO2, followed by a 20-h
chase in dye-free medium for lysosomes loaded with Rho as previously
described [23,24]. After being washed with Hank's buffered saline
solution (HBSS) (in mM: 5.0 KCl, 0.3 KH2PO4, 138 NaCl, 4.0 NaHCO3,
0.3Na2HPO4 · 7H2O, 5.6 D-glucose, and 10.0HEPES,with 2% antibiotics)
three times, the Rho-loaded cells were then incubated with the Ca2+-
sensitive dye fluo-4 at a concentration of 5 μM. Ca2+ release and
lysosome trace recordings were performed. Lysosome/Rho (Lyso/Rho)
fluorescence images were acquired at 568-nm excitation and 590-nm
emission. The co-localization coefficiency of Ca2+/fluo-4 and Lyso/Rho
was analyzed with Image-Pro Plus 6.0 software [25].

2.10. Assay of cytoplasmic dynein ATPase activity

Dynein inmouse CAMswas purified using a published protocol with
slight modification [26]. Cytoplasmic protein of mouse CAMs was
extracted with ice-cold extraction buffer (250 ml of 0.05 M PIPES-
NaOH, 0.05 M HEPES, pH 7.0, containing 2 mM MgC12, 1 mM EDTA,
1 mM phenylmethylsulfonyl fluoride (PMSF), 10 μg/ml leupeptin,
10 μg/ml tosyl arginine methyl ester (TAME), 1 μg/ml pepstatin A, and
1 mM dithiothreitol (DTT). Exogenous taxol (20 μM) was added to
20 ml of cell extract containing 4 mg/ml cytoplasmic protein, which
was incubated in a 37 °C water bath (with occasional swirling) for
12 min. The cell extract was underlayered with a prewarmed 7.5%
sucrose solution, and then centrifuged at 60,000 g for 30 min at 35 °C.
The supernatant was removed and the pellet was resuspended in
10 ml of extraction buffer containing 3 mM MgGTP and 5 μM taxol to
release kinesin and dynamin. The resuspended pellet was incubated for
15 min prior to centrifugation at 60,000 g for 30 min. The supernatant
was removed, and the pellet was resuspended in 1.25 ml of extraction
buffer containing 10 mM Mg-ATP for 10 min at 37 °C. The resuspended
pellet was centrifuged at 200,000 g for 30 min at 25 °C. The supernatant
containing ATP-released cytoplasmic dynein was used for sucrose
density gradient fractionation. Cytoplasmic dynein may constitute up
to 50% of total protein in the ATP extract, the remainder consisting of
tubulin and a low level of fibrous microtubule-associated proteins
(MAPs). 1 ml ATP extract was further centrifuged on 10 ml of a 5–20%
sucrose gradient in fractionation buffer (20 mM Tris–HCl, pH 7.6,
50 mM KCl, 5 mMMgSO4, 0.5 mM EDTA and 1 mM DTT) at 125,000 g
for 16 h at 4 °C. Eleven 1 ml fractions were collected from the bottom
of the tube. The dynein fraction peak at about fraction 5, well resolved
from the other tubulin and MAPs.

The assays of dynein ATPase activity were performed in 50 μl reac-
tion mixtures containing 20 mM Tris–HCl (pH 7.6), 50 mM KCl, 5 mM
MgSO4, 0.5 mM EDTA and 1 mM DTT [27]. In a standard assay condi-
tion, 10 μl of enzyme fractions and 4 mM of ATP were incubated with
assay buffer at 37 °C for 40 min. The reaction was then stopped using
highly acidic malachite green reagent and the absorbance was read at
660 nm in spectrophotometer (Elx800, Bio-Tek). The amount of inor-
ganic phosphate release in the enzymatic reaction was calculated using
the standard calibration curve generated with inorganic phosphate.
The control in this assay contained all ingredients of the reactionmixture
but the reaction was stopped at 0 time.

2.11. Statistics

Data are presented as means ± SE. Significant differences between
and within multiple groups were examined using ANOVA for repeated
measures, followed by Duncan's multiple-range test. The Students t
test was used to detect significant differences between two groups.
P b 0.05 was considered statistically significant.

3. Results

3.1. Inhibition of dynein increased the protein expression of LC3B and p62

To demonstrate the presence of dynein in the CAMs, we first
measured the expression of mRNA and protein of dynein by RT-PCR
and Western blot analysis. Supplemental Fig. 1A showed a typical gel
document of RT-PCR products of dynein and β-actin, respectively. The
normalized intensity ratio of dynein to β-actin is summarized in
Supplemental Fig. 1B. No significant difference among the different
total RNA groupswas found, which indicated that the amount of dynein
RT-PCR production was proportional to total RNA quantity. Most
importantly, Western blot studies (Supplemental Fig. 1C) and the
summarized intensity ratio of dynein to β-actin (Supplemental Fig. 1D)
show expression of dynein in CAMs. The intensity of individual dynein
bands is proportional to the amounts of CAMs homogenates loaded.
These results demonstrate expression of dynein in mouse CAMs.

The mammalian target of rapamycin (mTOR) is a serine/threonine
kinase that plays an integral role in the regulation of many cellular
processes, including transcription, translation, cell size, cytoskeletal
organization and autophagy. The immunosuppressive drug rapamycin
induces autophagysome formation in a wide variety of cell types
and species by inhibiting the activity of mTOR complex 1 (mTORC1)
[28,29]. In addition, rapamycin also regulates autophagosome fusion
with lysosome and autophagic flux [12,30]. Therefore, rapamycin was
used as a positive control in the present study. Microtubule-associated
protein 1 light chain 3 beta (LC3B) is an autophagy marker protein,
which is recruited to autophagosomalmembranes during the formation
of APs. p62 is a selective substrate of the autophagy degrading pathway.
Protein expression of LC3B significantly increased in CAMs that were
exposed to 7-Ket or rapamycin (Fig. 1A and B). Inhibition of dynein
ATPase by EHNA (erythro-9-[3-(2-Hydroxynonyl) adenine) further
increased LC3B expression in CAMs under control conditions or with
7-Ket or rapamycin. These results suggest that more APs were formed
or accumulated in CAMs treated with EHNA. Similarly, the abundance
of p62 was higher in CAMs pretreated with EHNA (Fig. 1C and D), sug-
gesting that less p62 protein was degraded possibly due to impaired
autophagic flux by EHNA.

Next, we further investigated the role of dynein for protein expres-
sion of LC3B and p62 in CAMs with dynamitin overexpression, which
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was shown to disrupt and inhibit the dynein complex. To this end, we
transfected dynamitin cDNA into CAMs resulting in a 5-fold overexpres-
sion of dynamitin (Supplemental Fig. 2A and B). We then analyzed
expression of LC3B and p62. Similar to EHNA, transfection of dynamitin
enhanced the expression of LC3B and p62 in CAMs under control condi-
tion or with 7-Ket or rapamycin treatment (Fig. 2A–D).

3.2. Dynein is involved in the formation of APLs and APs

We also used flow cytometry to analyze the formation of APLs in
CAMs with a lysomotrophic dye, acridine orange, which accumulates
in lysosomes with bright red fluorescence and shows bright green and
dim red fluorescence in the cytoplasm and nucleolus. Since APLs accu-
mulate more acridine orange than lysosomes, the red/green fluores-
cence ratio indirectly indicates the change of intracellular APLs [31].
Fig. 3A shows that CAMs treated by 7-Ket or rapamycin shifted up to
the area with high red fluorescence intensity, which was inhibited in
CAMs with EHNA. Quantification of the data in Fig. 3B and C indicated
that 7-Ket or rapamycin significantly increased the red/green fluores-
cence ratio suggesting that APLs were formed. However, such 7-Ket or
rapamycin-induced APL formation was markedly attenuated in CAMs
with dynein inhibitor EHNA or dynamitin overexpression.

Next, we examined whether reduced APL formation leads to accu-
mulation of APs in CAMs. Recently, a flow cytometry analysis using
Cyto-IDGreen dye has been demonstrated to be a rapid and quantitative
approach tomonitor autophagy in live cells [32]. The Cyto-ID Green dye
selectively labels autophagic vacuoles including pre-autophagosomes,
APs and APLs. Thus, an impaired autophagic flux will result in increased
number of autophagic vacuoles and enhanced Cyto-ID Green fluores-
cence. Fig. 4A and B showed that 7-Ket or rapamycin increased the
percentage of Cyto-ID-positive cells from 6.0% to 10.6% or 16.7%,
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respectively. Such 7-Ket or rapamycin-induced increases was further
augmented in CAMs with dynein inhibitor EHNA or dynamitin
overexpression.

3.3. Inhibition of dynein activity prevents lysosome fusion

Lamp1, a lysosomal marker protein belonging to a type 1 integral
membrane protein, is highly expressed in lysosomal membranes [33].
To directly investigate the fusion of APs with lysosomes in living cells,
we introduced LC3B-GFP and Lamp1-RFP genes into CAMs by BacMam
expression system to express both proteins that were located to APs
and lysosomes, respectively. As shown in Fig. 5A, yellow punctuates or
patches in the overlaid images labeled as area of interest (AOI) repre-
sented the colocalization of LC3B and Lamp1. Under control conditions,
only a few yellow dots were detected. The co-localization of LC3B and
Lamp-1was increased by upon 7-Ket or rapamycin treatment, indicating
a higher interaction or fusion of lysosomes with APs (Fig. 5A–C). This
colocalization was significantly attenuated by EHNA or transfection of
dynamitin cDNA (Fig. 5A–C).
3.4. Dynamic analysis to APs movement

APs are formed randomly throughout the cytoplasm. However, the
majority of lysosomes are localized in the perinuclear region. Thus,
APs need to be transported in the cytoplasm to fuse with lysosome. To
test a role of dynein in APs movement to lysosomes, we labeled APs in
livingCAMswith LC3B-GFP by BacMam technique. Typically,fluorescent
images of CAMs were taken every 10 s (Fig. 6A). Under control condi-
tion, APsmoved bidirectionally, i.e. towards and away from the nucleus.
When CAMs were treated with 7-Ket, the movement of APs was
enhanced (Fig. 6A). The velocity of APmovement significantly increased
from0.01 mm/s to 0.09 mm/s (Fig. 6B and C). EHNA-treatment or trans-
fection of dynamitin cDNA almost completely abolished all movement
of APs in the velocity-range between 0.04 mm/s and 0.09 mm/s. Similar
results were also found in the CAMs treated with rapamycin with or
without EHNA or dynamitin cDNA (not shown).

3.5. NAADP mediated 7-Ket-induced lysosomal Ca2+ release

To test whether lysosomal Ca2+ was involved in APs trafficking,
fluorescent imaging analysis was conducted to test the lysosomal
Ca2+ release in intact CAMs. GPN was used to release Ca2+ from lyso-
somes by inducing their selective osmotic swelling. 7-Ket doubled
GPN-induced Ca2+ release, which was blocked by NAADP antagonists,
NED-19 or PPADS (Fig. 7A and B).

To confirm this data we employed an independentmethod to detect
lysosomal Ca2+ release, i.e. wemeasured the localization of Ca2+ around
lysosomes by confocal microscopy after labeling cells with fluo-4. Ca2+

release regions co-localized with lysosomes as indicated by yellow
spots formed by green fluo-4 signals with rhodamine-red lysosomal
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marker (Lyso/Rho) (Fig. 8A). Quantification of the data revealed a signif-
icant increase in the colocalization coefficiency of fluo-4-Ca2+ and Lyso/
Rho in CAMs when they were treated with 7-Ket or rapamycin.
Lysosomal Ca2+ release by 7-Ket or rapamycin was abolished by pre-
treatment of CAMs with PPADS or NED-19.
3.6. NAADP-dependent lysosome Ca2+ controls dynein ATPase activity

Our data indicates that dynein controls APmovement in CAMs upon
treatment with 7-Ket or rapamycin. Thus, we tested whether 7-Ket or
rapamycin also regulates the activity of dynein ATPase. Treatment of
CAMs with 7-Ket resulted in a much higher dynein ATPase activity than
control CAMs (Fig. 9), which was significantly attenuated by EHNA,
PPADS or NED-19.
4. Discussion

In the present study, we demonstrated that upon atherogenic
stimulus, autophagy, in particular, autophagic flux, is significantly
enhanced in CAMs. Microtubule motor protein dynein mediates APs
trafficking and fusion with lysosomes, which consequently contributes
to autophagic flux. Lysosome-dependent NAADP-sensitive Ca2+ release
participates in the regulation of dynein ATPase activity.

Accumulating evidence indicates that the role of autophagy in the
vascular SMCs can be both protective and detrimental during the devel-
opment of atherosclerosis [34]. For example, at the early stage of athero-
sclerosis, moderately enhanced autophagy safeguards plaque cells
against oxidative stress by degrading the damaged material or engulf
defective mitochondria to limit the release of proapoptotic proteins
such as cytochrome c [3,35]. In addition, increased autophagy in CAMs
may stabilize CAMs in the contractile phenotype to prevent these cells
from proliferation and growth [36,37]. However, excessive autophagy
in SMCs may result in autophagic cell death leading to plaque destabili-
zation, thereby evoking atherothrombosis, myocardial infarction or
stroke [2,35,38–40]. Thus, the roles of autophagy in atherosclerosis
depend upon the status of autophagy and vascular cell types. The
present study attempted to explore the detailedmolecular mechanisms
that regulate autophagy in the pathogenesis of atherosclerosis. During
autophagy, APs are generated de novo to sequester cytoplasmic pro-
teins and organelles, which are delivered to lysosomes for degradation.
After formation, APs show a rapid vectorial movement in the direction
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of the centrosome, where lysosomes are usually concentrated [12].
It was previously reported that APs move in a microtubule- and
dynein-dynactin motor complex-dependent manner [41]. Here, we
demonstrated that dynein has a similar function in cells exposed to
proatherogenic stimuli.

LC3B is mammalian orthologue of Atg8 in yeast, which specifically
associates with AP membranes [42]. Upon fusion with the lysosome,
LC3B is degraded on the inner phagolysosomal membrane [14]. The
present study demonstrated that 7-Ket induced expression of LC3B
protein, indicating an increase in the number of APs in CAMs exposed
to proatherogenic stimuli. It further confirms that proatherogenic stim-
ulation can activate autophagy pathway, which is consistentwith previ-
ous reports [7]. Importantly, the protein levels of LC3B were further
enhanced in CAMs by inhibition of dynein both under resting conditions
and after proatherogenic stimulation, suggesting that more autophagic
vacuoles were formed or accumulated in CAMs lacking dynein ATPase
activity. In addition, p62 protein also accumulated in cells after inhibi-
tion of dynein upon proatherogenic stimulation by 7-Ket. Since p62,
also called sequestosome 1(SQSTM1), binds directly to LC3B and
thereby triggers autophagic degradation of p62-positive cytoplasmic
inclusion bodies [43], the accumulation of p62 protein suggests a failed
breakdown of APs and demonstrates that autophagic flux was impaired
in CAMs after inhibition of dynein. These results support the view that
dynein plays a key role in autophagy under atherogenic stimulus,
presumably because less APs can be targeted by lysosomes for the
breakdown process in CAMs lacking dynein activity, consequently
increasing the number of APs. This function is also consistent with our
observation that inhibition of dynein in CAMs reduced the formation
of APLs. In addition, we confirmed a reduced autophagic flux in CAMs
with dynein inhibition using Cyto-ID Green detection reagent, which
is a novel dye that selectively labels autophagic vacuoles in live cells
and monitors autophagic flux. This novel method confirms the notion
that 7-Ket enhances AP formation in CAMs, which further increased
upon inhibition of dynein activity, while the formation of APLs is
reduced upon dynein inhibition. This notion is also confirmed by our
data using LC3B-GFP and Lamp1-RFP. Two different types of fusion
can be observed between APs and lysosome. First, a complete fusion
of APs with lysosomes results in a completely double-labeled hybrid
vesicle. Second, a more often observed fusion belongs to the ‘kiss-and-
run’ type [31]. When they eventually separate, the lysosome retains
the transferred content from APs. Thus, both kind of fusion is likely to
result in the colocalization of LC3B-GFP with Lamp1-RFP, which was
significantly induced by 7-Ket in the present study. Inhibition of dynein
ATPase activity prevented this fusion event under proatherogenic
stimuli.
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Our data on the movement of APs within a cell provide insight into
the mechanisms on how dynein controls lysosome-AP fusion and the
formation of APLs. We found that the movement of APs was activated
in 7-Ket treated cells, which was prevented by inhibition of dynein.
This data strongly supports the view that dynein controls trafficking
and fusion of APs to lysosomes in CAMs. Recent studies have demon-
strated that defective autophagic flux may influence cell signaling
pathways such asWnt activity leading to fibrosis [44] or collagen degra-
dation in cardiomyocytes [44]. In this regard, our study may provide a
mechanistic link between impaired dynein function and atherogenesis.
Under proatherogenic stimulation, enhanced autophagic flux may
down-regulate signaling pathways controlling cell dedifferentiation,
proliferation and growth, or levels of extracellular matrix proteins via
autophagolysosomal degradation machinery. The loss of dynein func-
tion in CAMs impairs AP-lysosome fusion, resulting in decreased forma-
tion of APLs and impaired breakdown of autophagic contents. Such
defective autophagic flux may activate cell dedifferentiation, prolifera-
tion and growth, and/or accumulation of extracellular matrix proteins,
all of which ultimately contribute to coronary arterial smooth muscle
remodeling and ultimately induce or accelerate atherosclerosis.

7-Ket is found abundant in oxidized lowdensity lipoprotein (ox-LDL),
which has been demonstrated to enhance the expression of beclin-1 and
LC3B in vascular smoothmuscle cells [45]. Thus, in the present study, we
used 7-Ket as a prototype atherogenic stimulus to study the role of
dynein in regulating autophagy. Given the fact that many other athero-
genic stimulation including inflammation, ER stress, hypoxia andmeta-
bolic stress induce autophagy [1,2], the present study implicates that
similar role of dynein may be present in CAMs under these non-lipid
athergenic stimulations. In addition to smoothmuscle cells, atherogenic
stimulation by ox-LDL induced autophagy in endothelial cells, which
protect cells from apoptosis and thus endothelial cell damage [46,47]
or lead to degradation of ox-LDL [48]. Therefore, it is possible that loss
of dynein activitymay reduce autophagy or autophagolysosomal degra-
dation of ox-LDL in these endothelial cells leading to endothelial
dysfunction.

Finally, we analyzed what mechanisms controlled dynein activity
under proatherogenic stimuli. Dynein is subject to a wide array of
regulatory inputs [49]. Direct binding of Ca2+ to a component of the
dynein complex has been reported to regulate dynein motor function
and the distribution of cytoplasmic dynein [50,51]. Lysosomes contain
high levels of Ca2+, which serves as an important intracellular Ca2+

store as does the sarcoplasmic reticulum [52]. Lysosomal Ca2+ can be
mobilized or released to mediate molecular trafficking or recycling and
to control vesicular fusion events associated with lysosomes [53,54].
NAADP, a CD38-ADP-ribosylcyclase product, is one of the most potent
intracellular Ca2+ mobilizing molecules, which may regulate lysosomal
Ca2+ release and lysosome function through its action on the transient
receptor potential (TRP)-ML1 (mucolipin-1) channels [55,56], or
through other mechanisms such as two-pore channels [57]. NAADP
has been recognized as a fundamental signaling mechanism regulating
a variety of cell or organ functions in different biological systems [57].
In the present study, we demonstrated that proatherogenic stimulation
enhanced lysosomal Ca2+ release, which was markedly reduced
by NAADP antagonists in CAMs. This data suggests that NAADP-
dependent lysosomal Ca2+ release was involved in 7-Ket stimulation in
CAMs,which is consistentwith a report that 7-Ket can trigger a sustained
increase of cytosolic-free Ca2+ [58]. To further clarify if NAADP-
dependent lysosomal Ca2+ regulates dynein activity during 7-Ket stim-
ulation, we tested the activity of dynein ATPase in CAMs. Dynein
contains two identical heavy chains, which contain the ATPase activity
and are thus responsible for generating movement that move cargo
along the microtubule. In the present study, we found that 7-Ket
dramatically enhanced the dynein ATPase activity, which was almost
completely inhibited by NAADP inhibitors. This data suggests that
7-Ket induces NAADP production resulting in release of lysosomal
Ca2+ and activation of dynein ATPase activity in CAMs. Moreover, we
found that NAADP antagonists can mimic the effect of EHNA on APs
and APLs (Supplemental Fig. 3). To our knowledge, these results for
the first time provide evidence that a NAADP-dependent lysosomal
Ca2+ burst regulates dynein activity and consequent autophagy under
proatherogenic stimuli in CAMs.

In conclusion,we demonstrated that under atherogenic stimulus, au-
tophagy was significantly enhanced in CAMs via lysosome-dependent
NAADP-sensitive Ca2+ release. In this model, NAADP-sensitive Ca2+

release regulates dynein activity that critically controls the trafficking
of APs and lysosomes to encounter each other leading to APL formation
and autophagic flux in CAMs.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbamcr.2013.09.015.
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